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Shape comparison

• It is the task of evaluating similarities between given objects in a
scene/dataset/image/video sequence.

• Useful in shape recognition/retrieval/classification:
Given a query shape S, does the repository contain an object
equal/similar/of the same class as S, in spite of
◦ different view-point
◦ different size or scale
◦ translations and rotations
◦ other deformations
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Shape comparison pipeline

• Direct comparison in the shape space
◦ a distance D is defined on the shape space

D
(

,
)
=?

◦ distance D gives a dissimilarity assessment among shapes
◦ hard to compute
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Shape comparison pipeline

• Comparison via signatures
◦ A transform takes shapes to shape descriptors, or signatures

Shapes space −→ Signatures space

�−→
• compact representations of shapes
• usually not sufficient to reconstruct the studied object
• sufficient to identify an object as member of some class

◦ a distance d is defined on the signatures space

d
(

,
)
=?

◦ easy to compute
◦ ideally, signature distance = shape distance
◦ in reality, signature distance ≤ shape distance
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The category of shapes

Shapes are considered w.r.t. properties described by functions:

Objects

Pairs (X , f ):

• X is a triangulable topological space

• f : X → R is a continuous function

Morphisms

A morphism between two objects (X , f ), (X ′, f ′), is a continuous

function γ : X → X ′ s. t. f (x) ≥ f ′(γ(x)) for all x ∈ X : X
γ ��

f ���
��
��

X ′

f ′����
��
�≥

R
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Direct comparison in the shapes category

Natural pseudo-distance

D ((X , f ), (Y , g)) =

{
infh∈H(X ,Y )maxP∈X |f (P)− g ◦ h(P))|,
+∞ if H(X ,Y ) = ∅,

H(X ,Y ) being the set of all the homeomorphisms between X and Y .

[P. Frosini, M. Mulazzani: Size homotopy groups for computation of natural size distances, Bull. of the Belgian Math.
Soc. - Simon Stevin, 6 (1999), 455-464]
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From shapes to filtrations

• X a triangulable subspace of Rm.

• f : X → R a continuous function with finitely many homological
critical values a1 < a2 < . . . < ar .

• For s0 < s1 < . . . < sr s.t. si−1 < ai < si set

Xi = f −1((−∞, si ]).

a1
a2
a3
a4
a5

a6
a7
a8
a9
a10

fX

• We obtain a filtration:

∅ = X0 ↪→ . . . ↪→ Xi ↪→ . . . ↪→ Xj ↪→ . . .Xr = X
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From topological spaces to vector spaces

• Passing to homology we obtain a sequence of homomorphisms:

0 = H∗(X0) → . . .→ H∗(Xi ) → . . . → H∗(Xj) → . . .H∗(Xr ) = H∗(X )

• Measure the lifespan of homology classes along the filtration:

α

αα

...→ Hk(Xi−1) → Hk(Xi ) → ... → Hk(Xj−1) → Hk(Xj ) →...

α is born at Xi and dies at Xj

• Persistent Betti Numbers (PBNs): for u < v , βf (u, v) = rkιu,v .
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Persistence diagrams (underlying idea)

• Encode the birth level i and the death level j of a homology class
by a point (i , j)

X

0 1 2
f

12 of 56



Persistence diagram (formally)

Multiplicities of points:

• μf (x , y) = minε>0 βf (x + ε, y − ε)− βf (x − ε, y − ε)+
−βf (x + ε, y + ε) + βf (x − ε, y + ε)

• μf (x ,∞) = minε>0,y βf (x + ε, y)− βf (x − ε, y)

Definition

(x , y) ∈ dgm(f ) iff μf (x , y) > 0.

x

y

h i l m n o

0

2
1

1
2

x

y

h i l m n o

0

2
1

1
2
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From a persistence diagram to PBNs

Fundamental lemma

βf (u, v) =
∑

u′≤u,v ′>v

μf (u
′, v ′)+

∑
u′≤u

μf (u
′,∞)

x

y

h i l m n o

0

2
1

1
2

Caveat: Equality holds almost everywhere. It holds everywhere with
Čech homology.

[Frosini – L.: Size functions and formal series, Appl. Algebra Engrg. Comm. Comput., 12(4), 327–349 (2001)]
[Cohen-Steiner et al.: Stability of persistence diagrams, Discrete Comput. Geom., 37(1), 103–120 (2007)]
[Cerri et al.: Betti numbers in multiD persistent homology are stable, Math. Meth. Appl. Sc., 36, 1543–1557 (2013)]
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The bottleneck distance of persistence diagrams
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The bottleneck distance of persistence diagrams

x

y

x

y

q

p

m

x

y

p’

m’

q

p

m

p’

m’
dgm(f ) dgm(g)

dB (dgm(f ),dgm(g)) = minγ maxq∈dgm(f ) ‖q − γ(q)‖∞ with γ any
bijection between dgm(f ) and dgm(g).

Stability theorem w.r.t. function perturbations

dB (dgm(f ),dgm(g)) ≤ ‖f − g‖∞
[Cohen-Steiner et al.: Stability of persistence diagrams, Discrete Comput. Geom., 37(1), 103–120 (2007)]
[Chazal et al.: Proximity of persistence modules and their diagrams, Proc. SCG’09, 237–246 (2009)]
[Cerri et al.: Betti numbers in multiD persistent homology are stable, Math. Meth. Appl. Sc., 36, 1543–1557 (2013)]
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An optimal lower bound for D

D

⎛
⎜⎜⎜⎝

,

⎞
⎟⎟⎟⎠� dB

⎛
⎜⎜⎜⎜⎝

,

⎞
⎟⎟⎟⎟⎠

Corollary
dB(dgm(f ),dgm(g)) ≤ D((X , f ), (Y , g)).

Theorem
Let d be a distance between persistence diagrams for H0 such that
the stability property holds: dB (dgm(f ),dgm(g)) ≤ ‖f − g‖∞.
Then d ≤ dB .

[d’Amico et al: Natural pseudo-distance and optimal matching between reduced size functions, Acta Appl.Math. 2010]
16 of 56



Review on shape comparison

Review on 1D persistent homology

Multidimensional Persistence

The persistence space

Discrete vs Continuous setting

What’s going on

17 of 56



Motivation for multiD persistence

It is very desirable to obtain useful and computable summaries of the
evolution of topology in situations where

• there is naturally more than one persistence parameter

• topology destroying noise needs to be smoothed out
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The category of persistence modules

Define the category M of n-persistence modules:

• Objects are family of modules together with homomorphisms

M = ({Mu}u∈Rn , {ιM(u, v) : Mu → Mv}u	v∈Rn)

such that, for all u � v � w ∈ Rn, with u = (ui ) � v = (vi ) iff
ui ≤ vi ,

ιM(u,w) = ιM(v ,w) ◦ ιM(u, v), ιM(u, u) = idMu

19 of 56



The category of persistence modules

Define the category M of n-persistence modules:

• Objects are family of modules together with homomorphisms

M = ({Mu}u∈Rn , {ιM(u, v) : Mu → Mv}u	v∈Rn)

such that, for all u � v � w ∈ Rn, with u = (ui ) � v = (vi ) iff
ui ≤ vi ,

ιM(u,w) = ιM(v ,w) ◦ ιM(u, v), ιM(u, u) = idMu

• Morphisms from M to N are collections of homomorphisms
h = (hu : Mu → Nu)u∈Rn such that, for all u ≤ v ∈ Rn,
ιN(u, v) ◦ hu = hv ◦ ιM(u, v):

Mv
hv �� Nv

�
Mu

hu
��

ιM (u,v)

��

Nu

ιN (u,v)

��
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From shapes to persistence modules

Consider the following categories:

• C: the category of shapes,

• M: the category of persistence modules.

We want to define a functor

C−→M
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From shapes to persistence modules

Consider the following categories:

• C: the category of shapes,

• M: the category of persistence modules.

We want to define a functor

C−→M
To this end we introduce an intermediate category F : the category of
filtrations.

20 of 56



The category of filtrations

Define the category F :

• Objects are families of nested spaces (Xu)u∈Rn with inclusions
iu,v : Xu ↪→ Xv whenever u ≤ v ∈ Rn.

• Morphisms are families (γu)u∈Rn of maps γu : Xu → X ′
u such that

if u ≤ v ∈ Rn i ′u,v ◦ γu = γv ◦ iu,v , that is

Xu
γu ��

� �

iu,v
��

X ′
u� �

i ′u,v��
�

Xv
γv �� X ′

v
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The functor F : C → F from shapes to filtrations

In the category C of shapes (X , f ) with f : X → Rn, and u ∈ Rn,

denote Xu =
n⋂

i=1
f −1
i ((−∞, ui ])

If u ≤ v ∈ Rn, there is the inclusion iu,v : Xu ↪→ Xv

If γ : (X , f ) → (X ′, f ′) is a morphism in C, the restriction of γ,
γu : Xu → X ′

u is a morphism in F .
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The functor F : C → F from shapes to filtrations

In the category C of shapes (X , f ) with f : X → Rn, and u ∈ Rn,

denote Xu =
n⋂

i=1
f −1
i ((−∞, ui ])

If u ≤ v ∈ Rn, there is the inclusion iu,v : Xu ↪→ Xv

If γ : (X , f ) → (X ′, f ′) is a morphism in C, the restriction of γ,
γu : Xu → X ′

u is a morphism in F .

Define F : C → F by

• F (X , f ) =

(
(Xu)u∈Rn

)

• F (γ) = (γu)u∈Rn
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The persistent homology functor

Definition

The i -th persistent homology functor is the composite functor

H ◦ F : C F→ F H→ M

where H is the ordinary homology functor and F is the filtration
functor.

[Chazal et al.: Proximity of persistence modules and their diagrams, Proc. SCG’09, 237–246 (2009)]
[Carlsson – Zomorodian: The theory of multidimensional persistence, Discr. Comput. Geom. 42(1) (2009) 71–93]
[Lesnick: The theory of the interleaving distance on multidimensional persistence modules, Found. Comput. Math.]
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Properties of the persistent homology functor

• surjective on objects and on morphisms
◦ For homology coefficients in Q or in Z/pZ for some prime p, for every

persistence module M there exists a CW-complex X and a continuous
function f : X → Rn such that Hi ◦ F (X , f ) ∼= M.

◦ Let h : M → M′ be a homomorphism of persistence modules. Then
there exist (X , f ), (X ′, f ′) and a continuous map γ : X → X ′ in C such
that Hi ◦ F (X , f ) ∼= M, Hi ◦ F (X ′, f ′) ∼= M′, and Hi ◦ F (γ) ∼= h, for
i ∈ N and for homology coefficients in Q or in Z/pZ for some prime p.

[Lesnick: The theory of the interleaving distance on multidimensional persistence modules, Found. Comput. Math.]
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Properties of the persistent homology functor

• not full: f f ′

a1a1
a2a2
a3a3
a4a4
a5a5
a6a6

X X ′

H0 ◦ F (X , f ) ∼= H0 ◦ F (X ′, f )

but 
 ∃γ : (X , f ) → (X ′, f ′) such that H0 ◦ F (γ) is an isomorphism

[Cagliari et al: Persistence modules, shape description, and completeness, Proc. CTIC 2012]
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Interleavings of persistence modules

ε-interleaving

M, N are ε-inteleaved, ε > 0, if there exists f , g such that the
following diagrams commute for u � v ∈ Rn :

Mu

iu,vM ��

fu ��

Mv

fv��
Nu+�ε

i u+�ε,v+�ε
N

�� Nv+�ε

Mu+�ε

i u+�ε,v+�ε
M �� Mv+�ε

Nu
iu,vN

��
gu

��

Nv

gv
��

Mu

iu,u+2�ε
M ��

fu
���

���
Mu+2�ε

Nu+�ε

gu+�ε

������

Mu+�ε fu+�ε

		��
��

Nu
iu,u+2�ε
N

��

gu 

���
Nu+2�ε

[Chazal et al.: Proximity of persistence modules and their diagrams, Proc. SCG’09, 237–246 (2009)]
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The interleaving distance of persistence modules

Interleaving distance

dI (M,N) = inf{ε ≥ 0 : M,N are ε-inteleaved}

Theorem

dI (H ◦ F (X , f ),H ◦ F (Y , g)) ≤ D((X , f ), (Y , g))

Theorem

dI is an “optimal lower bound” for D((X , f ), (Y , g)).

[Lesnick: The theory of the interleaving distance on multidimensional persistence modules, Found. Comput. Math.]
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Persistent homology over Nn and graded
k [x1, x2, . . . , xn]-modules

The correspondence α such that α(M) =
⊕

v∈Nn Mv where the
action of xv = xv11 xv22 · · · xvnn is given by shifting elemnets of the
module up in the gradation defines an equivalence of categories
between the category of persistence modules of finite type over k and
the category of finitely generated non-negatively graded modules over
k[x1, x2, . . . , xn].

M(0,1) = 〈a, b〉,
x1x2(a − b) = 0

[Carlsson – Zomorodian: The theory of multidimensional persistence, Discr. Comput. Geom. 42(1) (2009) 71–93]
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Classification of persistence modules for n = 1

• For n = 1, persistence modules are completely classified by
persistence diagrams:

M ∼=
n⊕

i=1

αi∑
k[t]⊕

m⊕
j=1

βj∑
k[t]/(tγj )

PBNs ⇔ persistence diagram/barcode ⇔ persistence module
dB(dgmM,dgmN) = dI (M,N)

[Zomorodian – Carlsson: Computing Persistent Homology, Discrete Comput. Geom, 33 (2005) 249–274]
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Classification of persistence modules for n > 1

• For n > 1, no discrete and complete invariant exist:

◦ example: for lines l1 
= l2 
= l3 in k2, the isomorphism classes of the
persistence module

k2/l1 �� 0 �� 0

k2 ��

��

k2/l2 ��

��

0

��

k2 ��
Id

��

k2 ��

��

k2/l3

��

can be enumerated by lines in k2 (i.e. P1(k)).

[Carlsson – Zomorodian: The theory of multidimensional persistence, Discr. Comput. Geom. 42(1) (2009) 71–93]
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Known invariants of persistence modules

• ξ0(M) = multiset in Rn giving locations where generators are born
• ξ1(M) = multiset in Rn giving locations where relations between
generators are born

• ξ2(M) = multiset in Rn giving locations where relations between
relations are born

• ξi (M), i = 0, . . . n

M =
...

...

· · · C
f �� D �� · · ·

· · · A α
��

β
��

B
g
��

�� · · ·
...

...

ξi = Hi (A
(α,β)→ B ⊕ C

f−g→ D)
ξ0 = coker (f − g)
ξ1 = ker (f − g)/im(α, β)
ξ2 = ker (α, β)

[Chacholski-Scolamiero: Private communication]
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Known invariants of persistence modules

• ξ0(M) = multiset in Rn giving locations where generators are born
NOT STABLE

• ξ1(M) = multiset in Rn giving locations where relations between
generators are born NOT STABLE

• ξ2(M) = multiset in Rn giving locations where relations between
relations are born NOT STABLE

• ξi (M), i = 0, . . . n NOT STABLE
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Known invariants of persistence modules

• ξ0(M) = multiset in Rn giving locations where generators are born
NOT STABLE

• ξ1(M) = multiset in Rn giving locations where relations between
generators are born NOT STABLE

• ξ2(M) = multiset in Rn giving locations where relations between
relations are born NOT STABLE

• ξi (M), i = 0, . . . n NOT STABLE

• PBNs or rank invariant:

βM : {(u, v) ∈ Rn × Rn : u ≺ v} → N ∪ {∞}

βM(u, v) = rkιM(u, v)
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PBNs stability w.r.t. noisy functions

• L : u = s 	m + b line in Rn parametrized by s ∈ R
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• L : u = s 	m + b line in Rn parametrized by s ∈ R

• ML restriction of the n-dim p.f.d. persistence module M to L:
(ML)s = Mu, ι

s,s′ = ιu,u
′
, with u = s 	m + b, u′ = s ′	m + b in L
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• ML restriction of the n-dim p.f.d. persistence module M to L:
(ML)s = Mu, ι

s,s′ = ιu,u
′
, with u = s 	m + b, u′ = s ′	m + b in L

• dmatch(βM, βN) = supL:u=s �m+b mini mi · dB(dgmML,dgmNL)

• M, N are ε-interleaved =⇒ ML, NL are ε
minmi

-interleaved

u′′

u′

u

u + 	ε

u′′ − 	ε

u′ − 	ε

u′ + 	ε

ϕM

ϕM

α β

L
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• L : u = s 	m + b line in Rn parametrized by s ∈ R

• ML restriction of the n-dim p.f.d. persistence module M to L:
(ML)s = Mu, ι

s,s′ = ιu,u
′
, with u = s 	m + b, u′ = s ′	m + b in L

• dmatch(βM, βN) = supL:u=s �m+b mini mi · dB(dgmML,dgmNL)

• M, N are ε-interleaved =⇒ ML, NL are ε
minmi

-interleaved

u′′

u′

u

u + 	ε

u′′ − 	ε

u′ − 	ε

u′ + 	ε

ϕM

ϕM

α β
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• dmatch(βM, βN) ≤ dI (M,N)
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PBNs stability w.r.t. noisy functions

• L : u = s 	m + b line in Rn parametrized by s ∈ R

• ML restriction of the n-dim p.f.d. persistence module M to L:
(ML)s = Mu, ι

s,s′ = ιu,u
′
, with u = s 	m + b, u′ = s ′	m + b in L

• dmatch(βM, βN) = supL:u=s �m+b mini mi · dB(dgmML,dgmNL)

• M, N are ε-interleaved =⇒ ML, NL are ε
minmi

-interleaved

u′′

u′

u

u + 	ε

u′′ − 	ε

u′ − 	ε

u′ + 	ε

ϕM

ϕM

α β

L

• dmatch(βM, βN) ≤ dI (M,N)
PBNs are STABLE

[Cerri et al.: Betti numbers in multiD persistent homology are stable, Math. Meth. Appl. Sc., 36, 1543–1557 (2013)]
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PBNs stability w.r.t. noisy domains

Theorem

Let K1,K2 be non-empty closed subsets of a triangulable subspace X
of Rn. Let dK1, dK2 : X → R be their respective distance functions.
Moreover, let 	ϕ1, 	ϕ2 : X → Rk be vector-valued continuous functions.
Then, defining 	Φ1, 	Φ2 : X → Rk+1 by 	Φ1 = (dK1 , 	ϕ1) and
	Φ2 = (dK2 , 	ϕ2), the following inequality holds:

dmatch

(
β�Φ1

,β�Φ2

)
≤max{δH(K1,K2),‖�ϕ1−�ϕ2‖∞}.

[Frosini – L.: Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval, Pattern Recogn.

Lett., 34 (2013), 1320-1321. ]
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PBNs stability w.r.t. noisy domains: examples

−160 −140 −120 −100 −80 −60

−160

−150
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−80

−70
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PBNs internal stability

For a fixed persistence module M, the 1-D persistence diagram does
not change too much when we perturb the line:

Let M be a p.f.d. persistence module for which there exist
c = (c1, c2, . . . , cn) ∈ Rn such that ϕM(u, u′) is an isomorphism for
every u, u′ ∈ Rn with c ≺ u � u′. Let L : u = s 	m + b and
L′ : u = s 	m′ + b′. There exist constants K ,C > 0 such that ML and
ML′ are η-interleaved, and therefore dB(ML,ML′) ≤ η, with

η =
K · ‖	m − 	m′‖∞ + C · ‖b − b′‖∞

minmi ·minm′
i

.

[Cerri et al.: Betti numbers in multiD persistent homology are stable, Math. Meth. Appl. Sc., 36, 1543–1557 (2013)]
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Monodromy in multiD PBNs

[Cerri et al: A study of monodromy in the computation of multidimensional persistence, In: Proc. DGCI 2013]
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Definitions

For f : X → Rk , (u, v) ∈ Rk × Rk , u ≺ v

• μf (u, v) =
min�e��0, βf (u + 	e, v − 	e)− βf (u − 	e, v − 	e)

−βf (u + 	e, v + 	e) + βf (u − 	e, v + 	e).

u
u +�e

v
v +�e

u −�e

v −�e

	e

	e

• μf (u,∞) = min�e��0, v βf (u + 	e, v)− βf (u − 	e, v).
• The persistence space is the multiset of all points p such that
μf (p) > 0, with their multiplicity, union the points of
Δ = {(u, v) ∈ Rk × Rk : u � v and ∃i s.t ui = vi}, with infinite
multiplicity.
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Distance from Δ and persistence of a point

• The distance of a point p = (u, v) ∈ Rk × Rk with u ≺ v to Δ is

inf
q∈Δ

‖p − q‖∞ = min
i=1,...,k

vi − ui
2

.

• The persistence of a point p = (u, v) ∈ Rk × Rk with u ≺ v and
multiplicity μf (p) > 0 is

pers(p) = min
i=1,...,k

vi − ui .
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Fundamental lemma

For every ū ≺ v̄ ∈ Rk and for every 	e � 0 ∈ Rk , it holds that

βf (ū, v̄) =
∑

u � ū, v � v̄
ū − u, v − v̄ ∈ 〈	e〉

μf (u, v) +
∑
u � ū

ū − u ∈ 〈	e〉

μf (u,∞).

+

+++

++

+

+ + ++

- -

--

- -

-

---

- -

+ +

++

+

+++

++

+

- -

--

- -

-

---

- -

+ +

++

+++- - - +++- - -+++- - - +++- - -
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Stability Theorem

Let f , g : X → Rk be continuous functions. Then

dH(Spc(f ),Spc(g)) ≤ max
x∈X

‖f (x)− g(x)‖∞,

where the Hausdorff distance between Spc(f ) and Spc(g) is

max{ sup
p∈Spc(f )

inf
q∈Spc(g)

‖p − q‖∞, sup
q∈Spc(g)

inf
p∈Spc(f )

‖p − q‖∞}.
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Link to homological critical values

Definition

u ∈ Rk is a homological critical
value of f ∈ C 0(M,Rk) if, ∀ε > 0
small enough, ∃u′, u′′ ∈ Rk s.t.

• u′ � u � u′′,
• ‖u′ − u‖∞ ≤ ε, ‖u′′ − u‖∞ ≤ ε,

• H∗(Mu′ ↪→ Mu′′) is not an
isomorphism.

f=(x ,z)
u

x

y

z z

Theorem

• If μf (u, v) > 0, then u and v are homological critical values of f .

• If μf (u,∞) > 0, then u is a homological critical value for f .
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Link to Pareto critical values

Definition

u ∈ Rk is a Pareto critical value of f = (f1, . . . , fk) ∈ C r if ∃p ∈ M
s.t.

• f (p) = u,

• 0 ∈ Conv(∇f1(p), . . . ,∇fk(p))

Theorem

• If μf (u, v) > 0, then j(u) and j(v) are Pareto critical values of
j ◦ f for some linear projection j : Rk → Rh, h < k .

• If μf (u,∞) > 0, then j(u) is a Pareto critical value of j ◦ f for
some linear projection j : Rk → Rh, h < k .
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Persistence spaces and reduction to 1D-filtrations

The one-parameter filtration of X obtained by sweeping the line
L : u = s	e + b corresponds to the sublevel sets of

F(u,v) = max
i

{
fi (x)− bi

ei

}
.

The following statements hold:

• For u ≺ v with (u, v) = (s	e + b, t	e + b), it holds that
(u, v) ∈ Spc(f ) iff (s, t) ∈ dgm(F(u,v));

• For u = s	e + b, it holds that (u,∞) ∈ Spc(f ) iff
(s,∞) ∈ dgm(F(u,v)).

Moreover, pers(u,v)
pers(s,t) = mini ei .
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Comparison with persistence diagrams

Persistence Diagram

• defined via multiplicities

• Representation Thm

• for f ∈ C 0, link with
homological critical values

• for f ∈ C∞, link with critical
values

Persistence Space

• defined via multiplicities

• Representation Thm

• for f ∈ C 0, link with
homological critical values

• for f ∈ C r , link with Pareto
critical values

[Cerri–L.: Hausdorff stability of persistence spaces, Found. Comput. Math.]45 of 56
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Comparison with persistence diagrams

Persistence Diagram

• defined via multiplicities

• Representation Thm

• for f ∈ C 0, link with
homological critical values

• for f ∈ C∞, link with critical
values

• [CZ05] complete invariant

• stable w.r.t. dB and dH

Persistence Space

• defined via multiplicities

• Representation Thm

• for f ∈ C 0, link with
homological critical values

• for f ∈ C r , link with Pareto
critical values

• [CZ09] not complete invariant

• stable w.r.t. dH

[Cerri–L.: Hausdorff stability of persistence spaces, Found. Comput. Math.]45 of 56



Experimental results: PHOG

[Biasotti et al.: PHOG: Photometric and geometric functions for textured shape retrieval, Comput. Grap. Forum, 36(5)
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Continuous vs discrete setting

• Sub-level set filtrations are those for which stability results hold:
∀f , f ′ : X → Rk continuous functions, d(βf , βf ′) ≤ ‖f − f ′‖∞.
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Continuous vs discrete setting

• Sub-level set filtrations are those for which stability results hold:
∀f , f ′ : X → Rk continuous functions, d(βf , βf ′) ≤ ‖f − f ′‖∞.

• Discrete filtrations are those actually used in computations:

Laser Projector CCD scanner

Stable comparison of rank invariants obtained from discrete data?
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From discrete to continuous filtrations

Question: How to extend ϕ : V(K ) → Rk to a continuous function
K → Rk so that its sub-level set filtration coincides with {Kα}α∈Rk ?
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From discrete to continuous filtrations

Question: How to extend ϕ : V(K ) → Rk to a continuous function
K → Rk so that its sub-level set filtration coincides with {Kα}α∈Rk ?
Answer: 1-D persistence: use linear interpolation [Morozov, 2008]

α
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From discrete to continuous filtrations

Question: How to extend ϕ : V(K ) → Rk to a continuous function
K → Rk so that its sub-level set filtration coincides with {Kα}α∈Rk ?
Answer: Multi-D persistence:

linear interpolation yields topological aliasing

αϕ

v0

v1

ϕ(v0)

ϕ(v1)

ϕ1

ϕ2
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Topological Aliasing: numerical experiments

Original Linear int. % Diff
cat0 vs. cat0-tran1-1

H1 0.046150 0.040576 -13.737185
H0 0.225394 0.207266 -8.746249

cat0-tran1-2 vs. cat0-tran2-1

H1 0.034314 0.029188 -17.562012
H0 0.208451 0.204511 -1.926547

cat0-tran2-1 vs. cat0-tran2-2

H1 0.045545 0.037061 -22.891989
H0 0.212733 0.208097 -2.227807
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Axis-wise linear interpolation

• Given any σ ∈ K, set μ(σ) = max{ϕ(v) | v is a vertex of σ}.
• Use induction to define ϕ� : K → Rk on σ and a point wσ ∈ σ s.t.

◦ For all x ∈ σ, ϕ�(x) � ϕ�(wσ) = μ(σ) ;
◦ ϕ� is linear on any line segment [wσ, y ] with y ∈ ∂σ .
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◦ For all x ∈ σ, ϕ�(x) � ϕ�(wσ) = μ(σ) ;
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v0

v1 = wσϕ

ϕ(v0)

ϕ(v1) = μ(σ) = ϕ�(wσ)

ϕ1

ϕ2
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Axis-wise linear interpolation

• Given any σ ∈ K, set μ(σ) = max{ϕ(v) | v is a vertex of σ}.
• Use induction to define ϕ� : K → Rk on σ and a point wσ ∈ σ s.t.

◦ For all x ∈ σ, ϕ�(x) � ϕ�(wσ) = μ(σ) ;
◦ ϕ� is linear on any line segment [wσ, y ] with y ∈ ∂σ .

v0

v1
wσ

μ(σ) = ϕ�(wσ)
ϕ

ϕ(v0)

ϕ(v1)

ϕ1

ϕ2

Theorem

For any α ∈ Rk , Kα is a strong deformation retract of Kϕ�	α.
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Bridging stability to discrete persistent homology
• X and Y homeomorphic triangulable spaces (real objects);

• f : X → Rk ,g : Y → Rk continuous (real measurements);

• K′ and L′ simplicial complexes with |K′| = K , |K′| = L
(approximated object);

• ϕ̃ : K → Rk , ψ̃ : L → Rk continuous (approximated
measurements);

Theorem: If two homeomorphisms ξ : K → X , ζ : L → Y exist s.t.

‖ϕ̃− f ◦ ξ‖∞ ≤ ε/4, ‖ψ̃ − g ◦ ζ‖∞ ≤ ε/4

then, for any sufficiently fine subdivision K of K′ and L of L′,

|dmatch(βf , βg )− dmatch(βϕ, βψ)| ≤ ε,

ϕ : V(K) → Rk , ψ : V(L) → Rk being restrictions of ϕ̃ and ψ̃.
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Sketch of the proof

• ∃δ > 0 s.t. max{diam σ | σ ∈ K or σ ∈ L} < δ =⇒
|dmatch(βϕ̃, βψ̃)− dmatch(βϕ� , βψ�)| < ε/2.

[Cavazza et al: Comparison of persistent homologies for vector functions: from continuous to discrete and back,

Comput. Math. Appl. 66 (2013), 560-573 ]
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Sketch of the proof

• ∃δ > 0 s.t. max{diam σ | σ ∈ K or σ ∈ L} < δ =⇒
|dmatch(βϕ̃, βψ̃)− dmatch(βϕ� , βψ�)| < ε/2.

• βϕ = βϕ� , βψ = βψ� .
• max{diam σ | σ ∈ K or σ ∈ L} < δ =⇒

|dmatch(βϕ̃, βψ̃)− dmatch(βϕ, βψ)| < ε/2.

•
dmatch(βf , βg ) ≤ dmatch(βf , βf ◦ξ) + dmatch(βf ◦ξ, βϕ̃) + dmatch(βϕ̃, βψ̃)

+ dmatch(βψ̃, βg◦ζ ) + dmatch(βg◦ζ , βg )

.

[Cavazza et al: Comparison of persistent homologies for vector functions: from continuous to discrete and back,

Comput. Math. Appl. 66 (2013), 560-573 ]
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On-going research

• Carlsson et al (Stanford): coordinatization of the set of persistence
modules
◦ construction of an infinite family of functions, each of which takes as

input any persistence module and outputs a nonnegative number

• Lesnick et al (IMA): Exact computation of multi-dimensional
matching distance

• Chacholski et al (KTH): New stable invariants of persistence
modules

• Frosini et al (UniBO): Monodromy in PBNs

• Landi (UniMORE) and Cerri (CNR-IMATI): bottleneck distance for
persistence spaces

• Kaczynski et al (Univ. Sherbrooke): multidimensional persistent
homology and discrete Morse theory
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To know more

Applied Algebraic Topology Research Network:

http://www.ima.umn.edu/topology/

Applied Topology:

http://appliedtopology.org/
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